Diberdayakan oleh Blogger.
RSS
Post Icon

tugas komputasi


BAB I
PENDAHULUAN
A.    Latar Belakang
        Fisika komputasi merupakan serangkaian  ilmu yang menggabungkan antara fisika, komputer,  sains dan matematika terapan untuk memberikan solusi pada masalah - masalah dan kejadian - kejadian yang komplek baik dengan cara simulasi maupun dengan cara menggunakan algoritma tertentu,  Salah satunya adalah matlab. kita telah ketahui bahwa MATLAB adalah sebuah bahasa dengan (high-performance) kinerja tinggi untuk komputasi masalah teknik. Matlab mengintegrasikan komputasi, visualisasi, dan pemrograman dalam suatu model yang sangat mudah untuk pakai dimana masalah-masalah
dan penyelesaiannya diekspresikan dalam notasi matematika yang familiar.
        MATLAB merupakan suatu sistem interaktif yang memiliki elemen data dalam suatu array sehingga tidak lagi kita dipusingkan dengan masalah dimensi. Hal ini memungkinkan kita untuk memecahkan banyak masalah teknis yang terkait dengan komputasi, kususnya yang berhubungan dengan matrix dan formulasi vektor, yang mana masalah tersebut merupakan momok apabila kita harus menyelesaikannya dengan menggunakan bahasa level rendah seperti Pascall, C dan Basic.
B.    Rumusan Masalah
1.       Apa yang dimaksud dengan matlab ?
2.       Kelengkapan apa sajakah yang terdapat dalam matlab ?
C.     Tujuan
1.       Agar mahasiswa mampu mengetahui dan mengoperasikan program matlab.
2.       agar mahasiswa mengatahui apa apa saja yang terdapat dalam matlab.









BAB II
DASAR TEORI
A.    SEJARAH
        MATLAB (yang berarti "matrix laboratory") diciptakan pada akhir tahun 1970-an oleh Cleve Moler, yang kemudian menjadi Ketua Departemen Ilmu Komputer di Universitas New Mexico. Ia merancangnya untuk memberikan akses bagi mahasiswa dalam memakai LINPACK dan EISPACK tanpa harus mempelajari Fortran. Karyanya itu segera menyebar ke universitas-universitas lain dan memperoleh sambutan hangat di kalangan komunitas matematika terapan. Jack Little, seorang insinyur, dipertemukan dengan karyanya tersebut selama kunjungan Moler ke Universitas Stanford pada tahun 1983. Menyadari potensi komersialnya, ia bergabung dengan Moler dan Steve Bangert. Mereka menulis ulang MATLAB dalam bahasa pemrograman C, kemudian mendirikan The MathWorks pada tahun 1984 untuk melanjutkan pengembangannya. Pustaka yang ditulis ulang tadi kini dikenal dengan nama JACKPAC.[rujukan?] Pada tahun 2000, MATLAB ditulis ulang dengan pemakaian sekumpulan pustaka baru untuk manipulasi matriks, LAPACK.
        MATLAB pertama kali diadopsi oleh insinyur rancangan kontrol (yang juga spesialisasi Little), tapi lalu menyebar secara cepat ke berbagai bidang lain. Kini juga digunakan di bidang pendidikan, khususnya dalam pengajaran aljabar linear dan analisis numerik, serta populer di kalangan ilmuwan yang menekuni bidang pengolahan citra.
B.    PENGERTIAN
        Matlab adalah sebuah lingkungan komputasi numerikal dan bahasa pemrograman komputer generasi keempat. Dikembangkan oleh the mathworks, matlab memungkinkan manipulasi matriks, pem-plot-an fungsi dan data, implementasi algoritma, pembuatan antarmuka pengguna, dan peng-antarmuka-an dengan program dalam bahasa lainnya. Meskipun hanya bernuansa numerik, sebuah kotak kakas (toolbox) yang menggunakan mesin simbolik mupad, memungkinkan akses terhadap kemampuan aljabar komputer. Sebuah paket tambahan, Simulink, menambahkan simulasi grafis multiranah dan Desain Berdasar-Model untuk sistem terlekat dan dinamik. Pada tahun 2004, MathWorks mengklaim bahwa MATLAB telah dimanfaatkan oleh lebih dari satu juta pengguna di dunia pendidikan dan industri. Matlab meliputi antara lain:
1.       Analisis numerik
                Analisis numerik adalah studi algoritma untuk memecahkan masalah dalam matematika kontinu (sebagaimana dibedakan dengan matematika diskret) Salah satu tulisan matematika terdini adalah tablet Babilonia YBC 7289, yang memberikan hampiran numerik seksagesimal dari , panjang diagonal dari persegi satuan. Kemampuan untuk dapat menghitung sisi segitiga (dan berarti mampu menghitung akar kuadrat) sangatlah penting, misalnya, dalam pertukangan kayu dan konstruksi.
        Analisis numerik melanjutkan tradisi panjang perhitungan praktis matematika ini. Seperti hampiran orang Babilonia terhadap  , analisis numerik modern tidak mencari jawaban eksak, karena jawaban eksak dalam prakteknya tidak mungkin diperoleh.
        Sebagai gantinya, kebanyakan analisis numerik memperhatikan bagaimana memperoleh pemecahan hampiran, dalam batas galat yang beralasan. Analisis numerik secara alami diterapkan di semua bidang rekayasa dan ilmu-ilmu fisis, namun pada abad ke-21, ilmu-ilmu hayati dan seni mulai mengadopsi unsur-unsur komputasi ilmiah. Persamaan diferensial biasa muncul dalam pergerakan benda langit (planet, bintang dan galaksi. Optimisasi muncul dalam pengelolaan portofolio. Aljabar linear numerik sangat penting dalam psikologi kuantitatif. Persamaan diferensial stokastik dan rantai Markov penting dalam mensimulasikan sel hidup dalam kedokteran dan biologi.
2.       Bahasa pemprograman
                        Sebelum munculnya komputer modern metode numerik kerap kali tergantung pada interpolasi menggunakan pada tabel besar yang dicetak. Sejak pertengahan abad ke-20, sebagai gantinya, komputer menghitung fungsi yang diperlukan. Namun algoritma interpolasi mungkin masih digunakan sebagai bagian dari peranti lunak untuk memecahkan persamaan diferensial. Bahasa pemrograman, atau sering diistilahkan juga dengan bahasa komputer, adalah teknik komando/instruksi standar untuk memerintah komputer. Bahasa pemrograman ini merupakan suatu himpunan dari aturan sintaks dan semantik yang dipakai untuk mendefinisikan program komputer. Bahasa ini memungkinkan seorang programmer dapat menentukan secara persis data mana yang akan diolah oleh komputer, bagaimana data ini akan disimpan/diteruskan, dan jenis langkah apa secara persis yang akan diambil dalam berbagai situasi.
        Menurut tingkat kedekatannya dengan mesin komputer, bahasa pemrograman terdiri dari:
·         Bahasa Mesin, yaitu memberikan perintah kepada komputer dengan memakai kode bahasa biner, contohnya 01100101100110
·         Bahasa Tingkat Rendah, atau dikenal dengan istilah bahasa rakitan (bah.Inggris Assembly), yaitu memberikan perintah kepada komputer dengan memakai kode-kode singkat (kode mnemonic), contohnya MOV, SUB, CMP, JMP, JGE, JL, LOOP, dsb.
·         Bahasa Tingkat Menengah, yaitu bahasa komputer yang memakai campuran instruksi dalam kata-kata bahasa manusia (lihat contoh Bahasa Tingkat Tinggi di bawah) dan instruksi yang bersifat simbolik, contohnya {, }, ?, <<, >>, &&, ||, dsb.
·         Bahasa Tingkat Tinggi, yaitu bahasa komputer yang memakai instruksi berasal dari unsur kata-kata bahasa manusia, contohnya begin, end, if, for, while, and, or, dsb.
Sebagian besar bahasa pemrograman digolongkan sebagai Bahasa Tingkat Tinggi, hanya bahasa C yang digolongkan sebagai Bahasa Tingkat Menengah dan Assembly yang merupakan Bahasa Tingkat Rendah.
3.       Matriks
                Metrika adalah kumpulan bilangan berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan-bilangan yang terdapat di suatu matriks disebut dengan elemen atau anggota matriks. Dengan representasi matriks, perhitungan dapat dilakukan dengan lebih terstruktur. Pemanfaatannya misalnya dalam menjelaskan persamaan linier, transformasi koordinat, dan lainnya. Matriks seperti halnya variabel biasa dapat dimanipulasi, seperti dikalikan, dijumlah, dikurangkan dan didekomposisikan.
4.       Algoritma
                Dalam matematika dan komputasi, algoritma atau algoritme [1] merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap dari awal hingga akhir. Masalah tersebut dapat berupa apa saja, dengan catatan untuk setiap masalah, ada kriteria kondisi awal yang harus dipenuhi sebelum menjalankan algoritma. Algoritma akan dapat selalu berakhir untuk semua kondisi awal yang memenuhi kriteria, dalam hal ini berbeda dengan heuristik. Algoritma sering mempunyai langkah pengulangan (iterasi) atau memerlukan keputusan (logika Boolean dan perbandingan) sampai tugasnya selesai.
Desain dan analisis algoritma adalah suatu cabang khusus dalam ilmu komputer yang mempelajari karakteristik dan performa dari suatu algoritma dalam menyelesaikan masalah, terlepas dari implementasi algoritma tersebut. Dalam cabang disiplin ini algoritma dipelajari secara abstrak, terlepas dari sistem komputer atau bahasa pemrograman yang digunakan. Algoritma yang berbeda dapat diterapkan pada suatu masalah dengan kriteria yang sama.
                Kompleksitas dari suatu algoritma merupakan ukuran seberapa banyak komputasi yang dibutuhkan algoritma tersebut untuk menyelesaikan masalah. Secara informal, algoritma yang dapat menyelesaikan suatu permasalahan dalam waktu yang singkat memiliki kompleksitas yang rendah, sementara algoritma yang membutuhkan waktu lama untuk menyelesaikan masalahnya mempunyai kompleksitas yang tinggi.
                Sejarah istilah "algoritma" Kata algoritma berasal dari latinisasi nama seorang ahli matematika dari Uzbekistan Al Khawārizmi (hidup sekitar abad ke-9), sebagaimana tercantum pada terjemahan karyanya dalam bahasa latin dari abad ke-12 "Algorithmi de numero Indorum". Pada awalnya kata algorisma adalah istilah yang merujuk kepada aturan-aturan aritmetis untuk menyelesaikan persoalan dengan menggunakan bilangan numerik arab (sebenarnya dari India, seperti tertulis pada judul di atas). Pada abad ke-18, istilah ini berkembang menjadi algoritma, yang mencakup semua prosedur atau urutan langkah yang jelas dan diperlukan untuk menyelesaikan suatu permasalahan.
                 Masalah timbul pada saat akan menuangkan bagaimana proses yang harus dilalui dalam suatu/sebuah sistem (program) bagi komputer sehingga pada saat eksekusinya, komputer dapat bekerja seperti yang diharapkan. Programer komputer akan lebih nyaman menuangkan prosedur komputasinya atau urutan langkah proses dengan terlebih dahulu membuat gambaran (diagram alur) diatas kertas.
                Jenis-jenis Algoritma Terdapat beragam klasifikasi algoritma dan setiap klasifikasi mempunyai alasan tersendiri. Salah satu cara untuk melakukan klasifikasi jenis-jenis algoritma adalah dengan memperhatikan paradigma dan metode yang digunakan untuk mendesain algoritma tersebut. Beberapa paradigma yang digunakan dalam menyusun suatu algoritma akan dipaparkan dibagian ini. Masing-masing paradigma dapat digunakan dalam banyak algoritma yang berbeda.
                Divide and Conquer, paradigma untuk membagi suatu permasalahan besar menjadi permasalahan-permasalahan yang lebih kecil. Pembagian masalah ini dilakukan terus menerus sampai ditemukan bagian masalah kecil yang mudah untuk dipecahkan. Singkatnya menyelesaikan keseluruhan masalah dengan membagi masalah besar dan kemudian memecahkan permasalahan-permasalahan kecil yang terbentuk.
                Dynamic programming, paradigma pemrograman dinamik akan sesuai jika digunakan pada suatu masalah yang mengandung sub-struktur yang optimal (, dan mengandung beberapa bagian permasalahan yang tumpang tindih . Paradigma ini sekilas terlihat mirip dengan paradigma Divide and Conquer, sama-sama mencoba untuk membagi permasalahan menjadi sub permasalahan yang lebih kecil, tapi secara intrinsik ada perbedaan dari karakter permasalahan yang dihadapi.
                 Metode serakah. Sebuah algoritma serakah mirip dengan sebuah Pemrograman dinamik, bedanya jawaban dari submasalah tidak perlu diketahui dalam setiap tahap; dan menggunakan pilihan "serakah" apa yang dilihat terbaik pada saat itu.
5.       Antar muka
                Dalam penggunaan umum, sebuah antarmuka atau interface adalah sebuah titik, wilayah, atau permukaan di mana dua zat atau benda berbeda bertemu; dia juga digunakan secara metafora untuk perbatasan antara benda. Kata interface kadangkala (biasanya dalam bidang teknik) disingkat menjadi "i/f".
                Bentuk kerja dari interface berarti menghubungkan dua atau lebih benda pada suatu titik atau batasan yang terbagi, atau untuk menyiapkan kedua benda untuk tujuan tersebut.
                Kata interface juga memiliki arti khusus:
·      antarmuka pengguna adalah fungsi dan atribut sensor dari suatu sistem (aplikasi, perangkat lunak, kendaraan, dll) yang berhubungan dengan pengoperasiannya oleh pengguna.
·      Dalam elektronik dan teknik komputer, sebuah antarmuka dapat berarti : Batasan fisik dari dua subsistem atau alat.
                Sebuah bagian atau sirkuit di beberapa subsistemyang mengirim atau menerima sinyal ke atau dari subsistem lainnya: antarmuka jaringan, antarmuka video, kartu network.
Sebuah standar yang menjelaskan sebuah himpunan karakteristik yang berfungsi, karakteristik interkoneksi fisik umum, dan karakteristik signal untuk pertukaran data atau signal; antarmuka USB, antarmuka SCSI. Dalam telekomunikasi, sebuah titik interkoneksi antara pengguna peralatan terminal dan fasilitas komunikasi komersial. Dalam teknik software, ia adalah sebuah spesifikasi dari properti sebuah komponen software yang komponen lainnya dapat bergantung kepadanya: lihat antarmuka (ilmu komputer). Dalam kimia, ia adalah permukaan antara dua fase yang berbeda dalah campuran "heterogeneous". Dalam geologi, ia mungkin juga sebuah permukaan atau lapisan "anomalous" antara dua "epoch" geologikal yang berbeda atau jenis batuan.
6.       Simulik
                Simulink merupakan bagian tambahan dari software MATLAB (Mathworks Inc.). Simulink dapat digunakan sebagai sarana pemodelan, simulasi dan analisis dari sistem dinamik dengan menggunakan antarmuka grafis (GUI). Simulink terdiri dari beberapa kumpulan toolbox yang dapat digunakan untuk analisis sistem linier dan non-linier. Beberapa library yang sering digunakan dalam sistem kontrol antara lain math, sinks, dan sources.
7.       Ilmu komputer
                Ilmu komputer (bahasa Inggris: Computer Science), secara umum diartikan sebagai ilmu yang mempelajari baik tentang komputasi, perangkat keras (hardware) maupun perangkat lunak (software). Ilmu komputer mencakup beragam topik yang berkaitan dengan komputer, mulai dari analisis abstrak algoritma sampai subyek yang lebih konkret seperti bahasa pemrograman, perangkat lunak, termasuk perangkat keras. Sebagai suatu disiplin ilmu, Ilmu Komputer lebih menekankan pada pemrograman komputer, dan rekayasa perangkat lunak (software), sementara teknik komputer lebih cenderung berkaitan dengan hal-hal seperti perangkat keras komputer (hardware). Namun demikian, kedua istilah tersebut sering disalah-artikan oleh banyak orang.
                Tesis Church-Turing menyatakan bahwa semua alat komputasi yang telah umum diketahui sebenarnya sama dalam hal apa yang bisa mereka lakukan, sekalipun dengan efisiensi yang berbeda. Tesis ini kadang-kadang dianggap sebagai prinsip dasar dari ilmu komputer. Para ahli ilmu komputer biasanya menekankan komputer von Neumann atau mesin Turing (komputer yang mengerjakan tugas yang kecil dan deterministik pada suatu waktu tertentu), karena hal seperti itulah kebanyakan komputer digunakan sekarang ini. Para ahli ilmu komputer juga mempelajari jenis mesin yang lain, beberapa diantaranya belum bisa dipakai secara praktikal (seperti komputer neural, komputer DNA, dan komputer kuantum) serta beberapa diantaranya masih cukup teoritis (seperti komputer random and komputer oracle).
                Ilmu Komputer mempelajari apa yang bisa dilakukan oleh beberapa program, dan apa yang tidak (komputabilitas dan intelegensia buatan), bagaimana program itu harus mengevaluasi suatu hasil (algoritma), bagaimana program harus menyimpan dan mengambil bit tertentu dari suatu informasi (struktur data), dan bagaimana program dan pengguna berkomunikasi (antarmuka pengguna dan bahasa pemrograman).
                Ilmu komputer berakar dari elektronika, matematika dan linguistik. Dalam tiga dekade terakhir dari abad 20, ilmu komputer telah menjadi suatu disiplin ilmu baru dan telah mengembangkan metode dan istilah sendiri.
                Departemen ilmu komputer pertama didirikan di Universitas Purdue pada tahun 1962. Hampir semua universitas sekarang mempunyai departemen ilmu komputer. Penghargaan tertinggi dalam ilmu komputer adalah Turing Award, pemenang penghargaan ini adalah semua pionir di bidangnya.
·         Edsger Dijkstra mengatakan:  Ilmu komputer bukan tentang komputer sebagaimana astronomi bukan tentang teleskop
·         Fisikawan Richard Feynman mengatakan:
·         Ilmu komputer umurnya tidak setua fisika; lebih muda beberapa ratus tahun. Walaupun begitu, ini tidak berarti bahwa "hidangan" ilmuwan komputer jauh lebih sedikit dibanding fisikawan. Memang lebih muda, tapi dibesarkan secara jauh lebih intensif!
C.     Kelengkapan Pada Sistem Matlab
            Sebagai sebuah system, MATLAB tersusun dari 5 bagian utama:
1.       Development Environment. Merupakan sekumpulan perangkat dan fasilitas yang membantuanda untuk menggunakan fungsi-fungsi dan file-file MATLAB. Beberapa perangkat ini merupakan sebuah graphical user interfaces (GUI). Termasuk didalamnya adalah MATLAB desktop dan Command Window, command history, sebuah editor dan debugger, dan browsers untuk melihat help, workspace, files, dan search path.
2.       MATLAB Mathematical Function Library. Merupakan sekumpulan algoritma komputasi mulai dari fungsi-fungsi dasar sepertri: sum, sin, cos, dan complex arithmetic, sampai dengan fungsi-fungsi yang lebih kompek seperti matrix inverse, matrix eigenvalues, Bessel functions, dan fast Fourier transforms.
3.       MATLAB Language. Merupakan suatu high-level matrix/array language dengan control flow statements, functions, data structures, input/output, dan fitur-fitur object-oriented programming. Ini memungkinkan bagi kita untuk melakukan kedua hal baik "pemrograman dalam lingkup sederhana " untuk mendapatkan hasil yang cepat, dan "pemrograman dalam lingkup yang lebih besar" untuk memperoleh hasil-hasil dan aplikasi yang komplek.
4.       Graphics. MATLAB memiliki fasilitas untuk menampilkan vector dan matrices sebagai suatu grafik. Didalamnya melibatkan high-level functions (fungsi-fungsi level tinggi) untuk visualisasi data dua dikensi dan data tiga dimensi, image processing, animation, dan presentation graphics. Ini juga melibatkan fungsi level rendah yang memungkinkan bagi anda untuk membiasakan diri untuk memunculkan grafik mulai dari benutk yang sederhana sampai dengan tingkatan graphical user interfaces pada aplikasi MATLAB anda.
5.       MATLAB Application Program Interface (API). Merupakan suatu library yang memungkinkan program yang telah anda tulis dalam bahasa C dan Fortran mampu berinterakasi dengan MATLAB. Ini melibatkan fasilitas untuk pemanggilan routines dari MATLAB (dynamic linking), pemanggilan MATLAB sebagai sebuah computational engine, dan untuk membaca dan menuliskan MAT-files.














BAB III
PENUTUP

A.    kesimpulan
        Matlab adalah sebuah lingkungan komputasi numerikal dan bahasa pemrograman komputer generasi keempat. Dikembangkan oleh the mathworks, matlab memungkinkan manipulasi matriks, pem-plot-an fungsi dan data, implementasi algoritma, pembuatan antarmuka pengguna, dan peng-antarmuka-an dengan program dalam bahasa lainnya. Meskipun hanya bernuansa numerik, sebuah kotak kakas (toolbox) yang menggunakan mesin simbolik mupad, memungkinkan akses terhadap kemampuan aljabar komputer. Sebuah paket tambahan, Simulink, menambahkan simulasi grafis multiranah dan Desain Berdasar-Model untuk sistem terlekat dan dinamik



















  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 komentar: